Langue

Calculateur d'équation de droite

Trouver les équations de droite à partir de points, de la pente ou des intercepts

Entrer deux points

Point 1 (x₁, y₁)

Point 2 (x₂, y₂)

Théorie & Formule

Équations de droites

Une équation de droite décrit tous les points (x, y) qui se trouvent sur une droite. Il existe plusieurs façons d'exprimer une équation de droite, chacune utile dans différents contextes.

Pente

La pente (m) mesure la raideur et la direction d'une droite. Elle représente le taux de variation de y par rapport à x.

\(m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = \frac{\text{rise}}{\text{run}}\)

Formes des équations de droites

Forme pente-interception: \(y = mx + b\)

Où m est la pente et b est l'ordonnée à l'origine (où la droite coupe l'axe des y)

Forme point-pente: \(y - y_1 = m(x - x_1)\)

Où m est la pente et (x₁, y₁) est un point sur la droite

Forme standard: \(Ax + By = C\)

Où A, B et C sont des entiers, et A est généralement positif

Cas particuliers

  • Ligne horizontale: \(m = 0\), l'équation est y = k (valeur constante de y)
  • Ligne verticale: la pente est indéfinie, l'équation est x = k (valeur constante de x)
  • Lignes parallèles: ont des pentes égales (m₁ = m₂)
  • Lignes perpendiculaires: \(m_1 \cdot m_2 = -1\)
Slope & Equation of Line Calculator | Point-Slope Form | MathCalcLab | MathCalcLab