Calculatrice de série de Taylor

Générer des développements en séries de Taylor et de Maclaurin avec des approximations polynomiales étape par étape

Edit the function directly or use the presets above.

Use 0 for Maclaurin series

More terms = better approximation

f(x) and Taylor series

Taylor approximation

Résultats

Entrez les valeurs et cliquez sur Calculer pour voir le résultat.

Theory & Formula

A Taylor series represents a function as an infinite sum of terms calculated from the function's derivatives at a single point. When centered at x = 0, it's called a Maclaurin series.

Key properties:

  • Polynomial Approximation: Taylor series approximate smooth functions using polynomials
  • Convergence: Series converges within radius of convergence
  • Error Term: Remainder R_n = f^(n+1)(c)(x-a)^(n+1)/(n+1)! for some c between a and x
  • Applications: Used in numerical analysis, physics, engineering for approximations
  • Common Series: sin(x), cos(x), e^x, ln(1+x), (1+x)^n all have simple Taylor expansions
\(f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n\)

Worked Examples

Sine (Maclaurin)

\(\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\)

Cosine (Maclaurin)

\(\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\)

Exponential (Maclaurin)

\(e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\)

Natural Log

\(\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots\)
Taylor Series Calculator | MathCalcLab | MathCalcLab