Binomijakauman laskin

Laske todennäköisyyksiä binomijakaumille visualisoinnilla

Tulokset

Syötä arvot ja klikkaa Laske nähdäksesi tuloksen.

Binomial Distribution

The binomial distribution models the number of successes in a fixed number of independent trials, where each trial has the same probability of success. It applies when:

  • There are a fixed number of trials (n)
  • Each trial has only two possible outcomes (success or failure)
  • The probability of success (p) is the same for each trial
  • The trials are independent

Key Formulas:

  • P(X = k) = C(n, k) × p^k × (1-p)^(n-k)
  • Mean: μ = n × p
  • Variance: σ² = n × p × (1-p)
  • Standard Deviation: σ = √(n × p × (1-p))

Common applications include quality control, clinical trials, survey sampling, and any scenario involving repeated trials with binary outcomes.

\(P(X = k) = C(n, k) \times p^k \times (1-p)^{n-k}, \mu = np, \sigma^2 = np(1-p)\)

Worked Examples

Example 1

\(\text{Coin flips: } n=10, p=0.5, k=7 \rightarrow P(7 \text{ heads}) = 11.72\%\)

Example 2

\(\text{Quality control: } n=20, p=0.1, k=2 \rightarrow P(2 \text{ defects}) = 28.52\%\)
Binomial Distribution Calculator | MathCalcLab | MathCalcLab