Arc Length Calculator
Calculate arc length, sector area, and chord length with interactive circle visualization
Tulokset
Syötä arvot ja klikkaa Laske nähdäksesi tuloksen.
Theory & Formula
What is Arc Length?
Arc length is the distance along the curved line of a circle between two points.
Formulas
Arc Length:
\(s = r\theta \quad (\theta \text{ in radians})\)Sector Area:
\(A = \frac{1}{2}r^2\theta\)Chord Length:
\(c = 2r\sin\left(\frac{\theta}{2}\right)\)Degrees to Radians:
\(\theta_{rad} = \theta_{deg} \times \frac{\pi}{180}\)Example
Find arc length for r=10, θ=60°:
\(\theta = 60° = 60 \times \frac{\pi}{180} = \frac{\pi}{3} \text{ rad}\)\(s = r\theta = 10 \times \frac{\pi}{3} \approx 10.47 \text{ units}\)\(A = \frac{1}{2}r^2\theta = \frac{1}{2} \times 10^2 \times \frac{\pi}{3} \approx 52.36 \text{ square units}\)