Pythagoraan lauseen laskin

Etsi suorakulmaisen kolmion puuttuva sivu käyttäen Pythagoraan lausetta (a² + b² = c²) yksityiskohtaisella vaihe vaiheelta -ratkaisulla

Enter two sides to find the third.

abc

Right triangle showing sides a, b, and hypotenuse c

Tulokset

Syötä arvot ja klikkaa Laske nähdäksesi tuloksen.

Theory & Formula

The Pythagorean theorem is a fundamental principle in geometry that relates the sides of a right triangle. It states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

This theorem only applies to right triangles (triangles with one 90-degree angle). The hypotenuse is always the longest side and is opposite the right angle.

Common Pythagorean Triples
  • 3, 4, 5 (and multiples: 6, 8, 10; 9, 12, 15; etc.)
  • 5, 12, 13
  • 8, 15, 17
  • 7, 24, 25
  • 9, 40, 41
\(a^2 + b^2 = c^2\)

Worked Examples

Example 1: Finding the hypotenuse

\(a = 3, b = 4 \rightarrow c^2 = 3^2 + 4^2 = 9 + 16 = 25 \rightarrow c = \sqrt{25} = 5\)

Example 2: Finding a leg

\(a = ?, b = 8, c = 10 \rightarrow a^2 = 10^2 - 8^2 = 100 - 64 = 36 \rightarrow a = \sqrt{36} = 6\)
Pythagorean Theorem Calculator | MathCalcLab | MathCalcLab