Taylor-sarjalaskin

Luo Taylor- ja Maclaurin-sarjakehitelmiä vaihe vaiheelta polynomiapproksimaatioilla

Edit the function directly or use the presets above.

Use 0 for Maclaurin series

More terms = better approximation

f(x) and Taylor series

Taylor approximation

Tulokset

Syötä arvot ja klikkaa Laske nähdäksesi tuloksen.

Theory & Formula

A Taylor series represents a function as an infinite sum of terms calculated from the function's derivatives at a single point. When centered at x = 0, it's called a Maclaurin series.

Key properties:

  • Polynomial Approximation: Taylor series approximate smooth functions using polynomials
  • Convergence: Series converges within radius of convergence
  • Error Term: Remainder R_n = f^(n+1)(c)(x-a)^(n+1)/(n+1)! for some c between a and x
  • Applications: Used in numerical analysis, physics, engineering for approximations
  • Common Series: sin(x), cos(x), e^x, ln(1+x), (1+x)^n all have simple Taylor expansions
\(f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n\)

Worked Examples

Sine (Maclaurin)

\(\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\)

Cosine (Maclaurin)

\(\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\)

Exponential (Maclaurin)

\(e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\)

Natural Log

\(\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots\)
Taylor Series Calculator | MathCalcLab | MathCalcLab