Normalverteilungs-Rechner

Berechnen Sie Wahrscheinlichkeiten und z-Werte für die Normalverteilung mit Visualisierung

Ergebnisse

Geben Sie Werte ein und klicken Sie auf Berechnen, um das Ergebnis zu sehen.

Normal Distribution

The normal distribution (also called Gaussian distribution) is a continuous probability distribution that is symmetric around its mean. It is one of the most important distributions in statistics.

  • Mean (μ): The center of the distribution
  • Standard Deviation (σ): Measures the spread of the distribution
  • Z-Score: Number of standard deviations a value is from the mean: z = (x - μ) / σ
  • 68-95-99.7 Rule: Approximately 68% of data falls within 1σ, 95% within 2σ, and 99.7% within 3σ

The normal distribution is widely used in natural and social sciences to represent real-valued random variables whose distributions are not known. Many statistical tests assume normality.

\(z = \frac{x - \mu}{\sigma}, f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}\)

Worked Examples

Example 1

\(\text{IQ scores: } \mu = 100, \sigma = 15, x = 115 \rightarrow z = 1.0, P(X < 115) = 84.13\%\)

Example 2

\(\text{Heights: } \mu = 170\text{ cm}, \sigma = 10\text{ cm}, x = 180\text{ cm} \rightarrow z = 1.0, P(X > 180) = 15.87\%\)
Normal Distribution Calculator | MathCalcLab | MathCalcLab