Arc Length Calculator

Calculate arc length, sector area, and chord length with interactive circle visualization

Ergebnisse

Geben Sie Werte ein und klicken Sie auf Berechnen, um das Ergebnis zu sehen.

Theory & Formula

What is Arc Length?

Arc length is the distance along the curved line of a circle between two points.

Formulas

Arc Length:

\(s = r\theta \quad (\theta \text{ in radians})\)

Sector Area:

\(A = \frac{1}{2}r^2\theta\)

Chord Length:

\(c = 2r\sin\left(\frac{\theta}{2}\right)\)

Degrees to Radians:

\(\theta_{rad} = \theta_{deg} \times \frac{\pi}{180}\)

Example

Find arc length for r=10, θ=60°:

\(\theta = 60° = 60 \times \frac{\pi}{180} = \frac{\pi}{3} \text{ rad}\)\(s = r\theta = 10 \times \frac{\pi}{3} \approx 10.47 \text{ units}\)\(A = \frac{1}{2}r^2\theta = \frac{1}{2} \times 10^2 \times \frac{\pi}{3} \approx 52.36 \text{ square units}\)
Arc Length Calculator | Sector Area, Chord Length | MathCalcLab | MathCalcLab