Ableitungs-Rechner

Finden Sie Ableitungen von Funktionen mit Schritt-für-Schritt-Lösungen

Examples: x^2, 3x^4, sin(x), cos(x), e^x

Ergebnisse

Geben Sie Werte ein und klicken Sie auf Berechnen, um das Ergebnis zu sehen.

Theory & Formula

The derivative measures the rate of change of a function at any given point. It represents the slope of the tangent line to the function at that point.

Common derivative rules:

  • Power Rule: \(\frac{d}{dx}[x^n] = nx^{n-1}\)
  • Constant Rule: \(\frac{d}{dx}[c] = 0\)
  • Sum Rule: \(\frac{d}{dx}[f + g] = f' + g'\)
  • Product Rule: \(\frac{d}{dx}[fg] = f'g + fg'\)
  • Trigonometric: \(\frac{d}{dx}[\sin(x)] = \cos(x)\), \(\frac{d}{dx}[\cos(x)] = -\sin(x)\)
  • Exponential: \(\frac{d}{dx}[e^x] = e^x\)
\(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\)

Worked Examples

Power Rule

\(\frac{d}{dx}[x^3] = 3x^2\)

Trigonometric

\(\frac{d}{dx}[\sin(x)] = \cos(x)\)

Exponential

\(\frac{d}{dx}[e^x] = e^x\)
Derivative Calculator | MathCalcLab | MathCalcLab