Example 1
\(\text{Points: } (1,2), (2,4), (3,5), (4,4), (5,5) \rightarrow y = 0.6x + 2.2, R^2 = 0.64\)
散布図の視覚化でデータの最適な直線を見つける
値を入力して計算をクリックして結果を表示してください。
Linear regression finds the best-fitting straight line through a set of data points. The line is defined by the equation y = mx + b, where:
The regression line minimizes the sum of squared differences between observed and predicted values (least squares method). An R² value close to 1 indicates a strong linear relationship, while a value close to 0 suggests a weak relationship.
Example 1
Example 2