Calculatrice de distribution binomiale

Calculer les probabilités pour les distributions binomiales avec visualisation

Résultats

Entrez les valeurs et cliquez sur Calculer pour voir le résultat.

Binomial Distribution

The binomial distribution models the number of successes in a fixed number of independent trials, where each trial has the same probability of success. It applies when:

  • There are a fixed number of trials (n)
  • Each trial has only two possible outcomes (success or failure)
  • The probability of success (p) is the same for each trial
  • The trials are independent

Key Formulas:

  • P(X = k) = C(n, k) × p^k × (1-p)^(n-k)
  • Mean: μ = n × p
  • Variance: σ² = n × p × (1-p)
  • Standard Deviation: σ = √(n × p × (1-p))

Common applications include quality control, clinical trials, survey sampling, and any scenario involving repeated trials with binary outcomes.

\(P(X = k) = C(n, k) \times p^k \times (1-p)^{n-k}, \mu = np, \sigma^2 = np(1-p)\)

Worked Examples

Example 1

\(\text{Coin flips: } n=10, p=0.5, k=7 \rightarrow P(7 \text{ heads}) = 11.72\%\)

Example 2

\(\text{Quality control: } n=20, p=0.1, k=2 \rightarrow P(2 \text{ defects}) = 28.52\%\)
Binomial Distribution Calculator | MathCalcLab | MathCalcLab