Kieli

Alkulukuhajotelma

Hajota luvut alkutekijöihin yksityiskohtaisella vaiheittaisella erittelyllä

calculators.basic.primeFactorization.inputs.numberHelp

Np₁p₂p₃p₄calculators.basic.primeFactorization.visualization.factorTree

calculators.basic.primeFactorization.visualization.description

Tulokset

Syötä arvot ja napsauta Laske nähdäksesi tuloksen.

calculators.basic.primeFactorization.theory.title

calculators.basic.primeFactorization.theory.description

calculators.basic.primeFactorization.theory.keyConceptsTitle

  • calculators.basic.primeFactorization.theory.primeNumber
  • calculators.basic.primeFactorization.theory.compositeNumber
  • calculators.basic.primeFactorization.theory.fundamentalTheorem
  • calculators.basic.primeFactorization.theory.factorTreeMethod

calculators.basic.primeFactorization.theory.applicationsTitle

  • calculators.basic.primeFactorization.theory.findingGCDLCM
  • calculators.basic.primeFactorization.theory.simplifyingFractions
  • calculators.basic.primeFactorization.theory.cryptography
  • calculators.basic.primeFactorization.theory.numberTheory

calculators.basic.primeFactorization.theory.methodTitle

  1. calculators.basic.primeFactorization.theory.methodStep1
  2. calculators.basic.primeFactorization.theory.methodStep2
  3. calculators.basic.primeFactorization.theory.methodStep3
  4. calculators.basic.primeFactorization.theory.methodStep4

Laskettuja esimerkkejä

Esimerkki 1

\(60 = 2 \times 2 \times 3 \times 5 = 2^2 \times 3 \times 5\)

Esimerkki 2

\(144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 = 2^4 \times 3^2\)

Esimerkki 3

\(17 \text{ is prime, so } 17 = 17\)
Prime Factorization Calculator - Factor Numbers into Primes | MathCalcLab | MathCalcLab