Osatuletiste kalkulaator

Arvuta mitme muutujaga funktsioonide osatuletisi samm-sammult lahendustega

Supports polynomials, trigonometric, exponential, and mixed expressions in x and y

xzyf(x,y) surface

Multivariable function

Tulemused

Sisesta väärtused ja klõpsa Arvuta, et näha tulemust.

Theory & Formula

Partial derivatives measure how a multivariable function changes with respect to one variable while the others are held constant.

  • \(\frac{\partial f}{\partial x}\): Differentiate treating y as constant
  • \(\frac{\partial f}{\partial y}\): Differentiate treating x as constant
  • Gradient: \(\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})\) points toward steepest ascent
  • Applications: Optimization, physics, economics, machine learning
\(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\)

Worked Examples

Example 1

\(f(x,y) = xy \to \frac{\partial f}{\partial x} = y, \frac{\partial f}{\partial y} = x\)

Example 2

\(f(x,y) = x^2y \to \frac{\partial f}{\partial x} = 2xy, \frac{\partial f}{\partial y} = x^2\)

Example 3

\(f(x,y) = x^3y^2 \to \frac{\partial f}{\partial x} = 3x^2y^2, \frac{\partial f}{\partial y} = 2x^3y\)
Partial Derivatives Calculator | MathCalcLab | MathCalcLab