Limit Calculator

Calculate limits of functions at specific points or infinity with step-by-step solutions

Examples: x^2, sin(x), (x^2-1)/(x-1), 1/x

Enter 'inf' for infinity, '-inf' for negative infinity, or a number

Tulemused

Sisesta väärtused ja klõpsa Arvuta, et näha tulemust.

Theory & Formula

A limit describes the behavior of a function as its input approaches a particular value. It's fundamental to calculus and analysis.

Key Concepts

  • Direct Substitution \(\lim_{x \to a} f(x) = f(a)\)
  • One-Sided Limits (\(x \to a^-\)) ja (\(x \to a^+\)) peavad kokku langema
  • Limits at Infinity \(x \to \pm\infty\)
  • Indeterminate Forms \(\frac{0}{0}, \frac{\infty}{\infty}\)
  • Squeeze Theorem \(g(x) \le f(x) \le h(x)\) ja \(\lim g(x) = \lim h(x) = L\), siis \(\lim f(x) = L\)
\(\lim_{x \to a} f(x) = L\)

Worked Examples

Finite Limit

\(\lim_{x \to 2} x^2 = 4\)

Limit at Infinity

\(\lim_{x \to \infty} \frac{1}{x} = 0\)

Discontinuity

\(\lim_{x \to 0} \frac{1}{x} \text{ does not exist}\)
Limit Calculator | MathCalcLab | MathCalcLab