Modular Arithmetic Calculator

Perform modular arithmetic operations including addition, multiplication, exponentiation, and modular inverse calculations.

Select an operation and enter the values to perform modular arithmetic.

Ergebnisse

Geben Sie Werte ein und klicken Sie auf Berechnen, um das Ergebnis zu sehen.

Theory & Formula

Modular Arithmetic Theory

Modular arithmetic is a system of arithmetic for integers where numbers "wrap around" upon reaching a certain value (the modulus). We write a ≡ b (mod m) to mean that a and b have the same remainder when divided by m.

Basic Operations

Addition: \((a + b) \bmod m\)
Multiplication: \((a \times b) \bmod m\)
Exponentiation: \(a^b \bmod m\)
Modular Inverse: \(a \times a^{-1} \equiv 1 \pmod{m}\)

Applications

Modular arithmetic is fundamental in cryptography (RSA, Diffie-Hellman), computer science (hash functions, checksums), and number theory. The modular inverse is used extensively in cryptographic algorithms.

Example

17 + 8 ≡ 0 (mod 5) because 25 mod 5 = 0. Also, 3^(-1) ≡ 2 (mod 5) because 3 × 2 = 6 ≡ 1 (mod 5).

Modular Arithmetic Calculator | Modular Inverse & Operations | MathCalcLab | MathCalcLab