[basic.numberBase.title]

[basic.numberBase.description]

Decimal - Valid digits: 0-9

Binary - Valid digits: 0, 1

[basic.numberBase.inputs.hint]

Quick Reference Table (0-15)

[basic.numberBase.bases.decimal][basic.numberBase.bases.binary][basic.numberBase.bases.octal][basic.numberBase.bases.hexadecimal]
0000000
1000111
2001022
3001133
4010044
5010155
6011066
7011177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F

Ergebnisse

Geben Sie Werte ein und klicken Sie auf Berechnen, um das Ergebnis zu sehen.

Theory & Formula

What are Number Bases?

A number base (or radix) is the number of unique digits used to represent numbers in a positional numeral system. Different bases are used in different contexts, especially in computer science.

[basic.numberBase.theory.commonBases]

  • [basic.numberBase.bases.binary] (Base 2): [basic.numberBase.theory.binaryDescription]
  • [basic.numberBase.bases.octal] (Base 8): [basic.numberBase.theory.octalDescription]
  • [basic.numberBase.bases.decimal] (Base 10): [basic.numberBase.theory.decimalDescription]
  • [basic.numberBase.bases.hexadecimal] (Base 16): [basic.numberBase.theory.hexDescription]

[basic.numberBase.theory.conversionMethod]

[basic.numberBase.theory.toDecimal]

\(N_{base} = d_n \times base^n + d_{n-1} \times base^{n-1} + \ldots + d_1 \times base^1 + d_0 \times base^0\)

[basic.numberBase.theory.fromDecimal]

Divide the decimal number by the target base repeatedly, collecting remainders. Read the remainders from bottom to top.

Example: Convert Binary to Decimal

Convert 1011₂ to decimal:

\(1011_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0\)\(= 8 + 0 + 2 + 1\)\(= 11_{10}\)
Number Base Converter | Binary, Octal, Decimal, Hexadecimal | MathCalcLab | MathCalcLab