Matrix-Rechner

Führen Sie Matrixoperationen durch, einschließlich Addition, Subtraktion, Multiplikation, Determinante, Inverse, Transponierte und Eigenwertberechnungen

Matrix A

Matrix B

Ergebnisse

Geben Sie Werte ein und klicken Sie auf Berechnen, um das Ergebnis zu sehen.

Theory & Formula

A matrix is a rectangular array of numbers arranged in rows and columns. Matrix algebra is fundamental to linear algebra, computer graphics, and many scientific applications.

Key operations:

  • Addition/Subtraction: Matrices must have same dimensions
  • Multiplication: (m×n) × (n×p) = (m×p), rows of A must equal columns of B
  • Determinant: Only for square matrices, measures "volume scaling"
  • Inverse: A⁻¹A = I, only exists if det(A) ≠ 0
  • Transpose: Flip rows and columns (Aᵀ)ᵢⱼ = Aⱼᵢ
  • Eigenvalues: λ values where Av = λv for some vector v
\(A, B \in \mathbb{R}^{m \times n}\)

Worked Examples

Addition

\([a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]\)

Multiplication

\(C = AB: c_{ij} = \sum_k a_{ik}b_{kj}\)

Determinant

\(\det\begin{pmatrix}a & b \\ c & d\end{pmatrix} = ad - bc\) (2×2 case)
Matrix Calculator | MathCalcLab | MathCalcLab