Calcolatrice fattorizzazione

Fattorizza espressioni quadratiche nella loro forma più semplice con soluzioni dettagliate passo dopo passo

Enter a quadratic expression in the form ax² + bx + c

Common Examples:

  • x² + 5x + 6 → (x + 2)(x + 3)
  • x² - 4 → (x - 2)(x + 2)
  • 2x² - 8x + 6 → 2(x - 1)(x - 3)
  • x² - 6x + 9 → (x - 3)²
Roots (x-intercepts)

Factoring finds x-intercepts

Risultati

Inserisci i valori e clicca Calcola per vedere il risultato.

Theory & Formula

Factoring is the process of breaking down a polynomial into simpler expressions (factors) that multiply together to give the original polynomial.

For quadratic expressions, factoring reveals the roots (zeros) of the polynomial:

  • Standard form: ax² + bx + c
  • Factored form: a(x - r₁)(x - r₂) where r₁ and r₂ are the roots
  • Special cases: Perfect squares, difference of squares
  • Not all quadratics factor nicely over integers
\(ax^2 + bx + c = a(x - r_1)(x - r_2)\)

Worked Examples

Simple

\(x^2 + 5x + 6 = (x + 2)(x + 3)\)

Difference of Squares

\(x^2 - 9 = (x - 3)(x + 3)\)

Perfect Square

\(x^2 + 6x + 9 = (x + 3)^2\)

Leading Coefficient

\(2x^2 - 8x + 6 = 2(x - 1)(x - 3)\)
Factoring Calculator | MathCalcLab | MathCalcLab