[basic.numberBase.title]

[basic.numberBase.description]

Decimal - Valid digits: 0-9

Binary - Valid digits: 0, 1

[basic.numberBase.inputs.hint]

Quick Reference Table (0-15)

[basic.numberBase.bases.decimal][basic.numberBase.bases.binary][basic.numberBase.bases.octal][basic.numberBase.bases.hexadecimal]
0000000
1000111
2001022
3001133
4010044
5010155
6011066
7011177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F

Résultats

Entrez les valeurs et cliquez sur Calculer pour voir le résultat.

Theory & Formula

What are Number Bases?

A number base (or radix) is the number of unique digits used to represent numbers in a positional numeral system. Different bases are used in different contexts, especially in computer science.

[basic.numberBase.theory.commonBases]

  • [basic.numberBase.bases.binary] (Base 2): [basic.numberBase.theory.binaryDescription]
  • [basic.numberBase.bases.octal] (Base 8): [basic.numberBase.theory.octalDescription]
  • [basic.numberBase.bases.decimal] (Base 10): [basic.numberBase.theory.decimalDescription]
  • [basic.numberBase.bases.hexadecimal] (Base 16): [basic.numberBase.theory.hexDescription]

[basic.numberBase.theory.conversionMethod]

[basic.numberBase.theory.toDecimal]

\(N_{base} = d_n \times base^n + d_{n-1} \times base^{n-1} + \ldots + d_1 \times base^1 + d_0 \times base^0\)

[basic.numberBase.theory.fromDecimal]

Divide the decimal number by the target base repeatedly, collecting remainders. Read the remainders from bottom to top.

Example: Convert Binary to Decimal

Convert 1011₂ to decimal:

\(1011_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0\)\(= 8 + 0 + 2 + 1\)\(= 11_{10}\)
Number Base Converter | Binary, Octal, Decimal, Hexadecimal | MathCalcLab | MathCalcLab