数列・級数計算機

等差数列と等比数列を計算し、第n項、級数の和を求め、収束を分析

The constant added to each term

結果

値を入力して計算をクリックして結果を表示してください。

Theory & Formula

Sequences are ordered lists of numbers. A series is the sum of the terms of a sequence.

Arithmetic Sequences:

  • Each term differs by a constant \((d)\)
  • nth term: \(a_n = a_1 + (n - 1)d\)
  • Sum: \(S_n = \frac{n}{2}[2a_1 + (n - 1)d]\) or \(S_n = \frac{n}{2}(a_1 + a_n)\)
  • Linear growth pattern

Geometric Sequences:

  • Each term is multiplied by a constant \((r)\)
  • nth term: \(a_n = a_1 \times r^{n-1}\)
  • Sum: \(S_n = \frac{a_1(1 - r^n)}{1 - r}\) for \(r \neq 1\)
  • Converges to \(S_\infty = \frac{a_1}{1 - r}\) when \(|r| < 1\)
  • Exponential growth/decay pattern
\(\text{Arithmetic: } a_n = a_1 + (n-1)d \quad | \quad \text{Geometric: } a_n = a_1r^{n-1}\)

Worked Examples

Arithmetic

\(2, 5, 8, 11, \ldots \rightarrow d = 3, a_{10} = 29\)

Geometric (Converges)

\(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \rightarrow r = \frac{1}{2}, S_\infty = 2\)

Geometric (Diverges)

\(1, 2, 4, 8, \ldots \rightarrow r = 2\), diverges
Sequences & Series Calculator | MathCalcLab | MathCalcLab