Calcolatrice frazione

Addiziona, sottrai, moltiplica e dividi frazioni con soluzioni passo dopo passo

Fraction Calculator

/
/

Risultati

Inserisci i valori e clicca Calcola per vedere il risultato.

Fraction Operations

Fraction operations follow specific rules for each mathematical operation.

Key Points:

  • Always simplify fractions to lowest terms
  • Denominators cannot be zero
  • For division, the second fraction cannot have zero numerator
  • Find common denominators for addition and subtraction
\(\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}\)

Worked Examples

Addition

\(\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}\) - Find common denominator, then add numerators

Subtraction

\(\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}\) - Find common denominator, then subtract numerators

Multiplication

\(\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}\) - Multiply numerators and denominators

Division

\(\frac{a}{b} \div \frac{c}{d} = \frac{a \times d}{b \times c}\) - Multiply by the reciprocal of the second fraction

Example: 1/4 + 1/3

\(\frac{1}{4} + \frac{1}{3} = \frac{3}{12} + \frac{4}{12} = \frac{7}{12}\)

Example: 2/3 × 3/4

\(\frac{2}{3} \times \frac{3}{4} = \frac{2 \times 3}{3 \times 4} = \frac{6}{12} = \frac{1}{2}\)
Fraction Calculator | MathCalcLab | MathCalcLab