Kieli

Jaksot ja sarjat

Laske aritmeettiset ja geometriset jaksot ja sarjat

The constant added to each term

Tulokset

Syötä arvot ja napsauta Laske nähdäksesi tuloksen.

Teoria ja kaava

Sequences are ordered lists of numbers. A series is the sum of the terms of a sequence.

Arithmetic Sequences:

  • Each term differs by a constant \((d)\)
  • nth term: \(a_n = a_1 + (n - 1)d\)
  • Sum: \(S_n = \frac{n}{2}[2a_1 + (n - 1)d]\) or \(S_n = \frac{n}{2}(a_1 + a_n)\)
  • Linear growth pattern

Geometric Sequences:

  • Each term is multiplied by a constant \((r)\)
  • nth term: \(a_n = a_1 \times r^{n-1}\)
  • Sum: \(S_n = \frac{a_1(1 - r^n)}{1 - r}\) for \(r \neq 1\)
  • Converges to \(S_\infty = \frac{a_1}{1 - r}\) when \(|r| < 1\)
  • Exponential growth/decay pattern
\(\text{Arithmetic: } a_n = a_1 + (n-1)d \quad | \quad \text{Geometric: } a_n = a_1r^{n-1}\)

Laskettuja esimerkkejä

Arithmetic

\(2, 5, 8, 11, \ldots \rightarrow d = 3, a_{10} = 29\)

Geometric (Converges)

\(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \rightarrow r = \frac{1}{2}, S_\infty = 2\)

Geometric (Diverges)

\(1, 2, 4, 8, \ldots \rightarrow r = 2\), diverges
Sequences & Series Calculator | MathCalcLab | MathCalcLab