MathCalcLab
Sprache

Folgen & Reihen

Berechnen Sie arithmetische und geometrische Folgen und Reihen

The constant added to each term

Ergebnisse

Geben Sie Werte ein und klicken Sie auf Berechnen, um das Ergebnis zu sehen.

Theorie & Formel

Sequences are ordered lists of numbers. A series is the sum of the terms of a sequence.

Arithmetic Sequences:

  • Each term differs by a constant \((d)\)
  • nth term: \(a_n = a_1 + (n - 1)d\)
  • Sum: \(S_n = \frac{n}{2}[2a_1 + (n - 1)d]\) or \(S_n = \frac{n}{2}(a_1 + a_n)\)
  • Linear growth pattern

Geometric Sequences:

  • Each term is multiplied by a constant \((r)\)
  • nth term: \(a_n = a_1 \times r^{n-1}\)
  • Sum: \(S_n = \frac{a_1(1 - r^n)}{1 - r}\) for \(r \neq 1\)
  • Converges to \(S_\infty = \frac{a_1}{1 - r}\) when \(|r| < 1\)
  • Exponential growth/decay pattern
\(\text{Arithmetic: } a_n = a_1 + (n-1)d \quad | \quad \text{Geometric: } a_n = a_1r^{n-1}\)

Gelöste Beispiele

Arithmetic

\(2, 5, 8, 11, \ldots \rightarrow d = 3, a_{10} = 29\)

Geometric (Converges)

\(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \rightarrow r = \frac{1}{2}, S_\infty = 2\)

Geometric (Diverges)

\(1, 2, 4, 8, \ldots \rightarrow r = 2\), diverges
Sequences & Series Calculator | MathCalcLab | MathCalcLab