Calculatrice de suites et séries

Calculer les suites arithmétiques et géométriques, trouver les nièmes termes, les sommes de séries et analyser la convergence

The constant added to each term

Résultats

Entrez les valeurs et cliquez sur Calculer pour voir le résultat.

Theory & Formula

Sequences are ordered lists of numbers. A series is the sum of the terms of a sequence.

Arithmetic Sequences:

  • Each term differs by a constant \((d)\)
  • nth term: \(a_n = a_1 + (n - 1)d\)
  • Sum: \(S_n = \frac{n}{2}[2a_1 + (n - 1)d]\) or \(S_n = \frac{n}{2}(a_1 + a_n)\)
  • Linear growth pattern

Geometric Sequences:

  • Each term is multiplied by a constant \((r)\)
  • nth term: \(a_n = a_1 \times r^{n-1}\)
  • Sum: \(S_n = \frac{a_1(1 - r^n)}{1 - r}\) for \(r \neq 1\)
  • Converges to \(S_\infty = \frac{a_1}{1 - r}\) when \(|r| < 1\)
  • Exponential growth/decay pattern
\(\text{Arithmetic: } a_n = a_1 + (n-1)d \quad | \quad \text{Geometric: } a_n = a_1r^{n-1}\)

Worked Examples

Arithmetic

\(2, 5, 8, 11, \ldots \rightarrow d = 3, a_{10} = 29\)

Geometric (Converges)

\(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \rightarrow r = \frac{1}{2}, S_\infty = 2\)

Geometric (Diverges)

\(1, 2, 4, 8, \ldots \rightarrow r = 2\), diverges
Sequences & Series Calculator | MathCalcLab | MathCalcLab